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Abstract

Heat transfer in magnetically confined plasmas is a process characterized by
non-linear and extremely high anisotropic diffusion phenomena. Standard nu-
merical methods, successfully employed in the numerical treatment of classical
diffusion problems, are generally inefficient, or even prone to break down, when
such high anisotropies come into play, leading thus to the need of new numerical
techniques suitable for this kind of problems.

In the present paper, the authors propose a numerical scheme based on an
asymptotic-preserving (AP) reformulation of this non-linear evolution problem,
generalizing the ideas introduced in a previous paper for the case of elliptic
anisotropic problems (P. Degond et al., An asymptotic-preserving method for
highly anisotropic elliptic equations based on a Micro–Macro decomposition, J.
Comput. Phys. 231 (2012), no. 7, 2724-2740. The performances of the here pro-
posed AP scheme are tested numerically; in particular it is shown that the scheme
is capable to deal with problems characterized by a high degree of anisotropy,
thus proving to be suitable for the study of anisotropic diffusion in magnetically
confined plasmas.

Keywords: Anisotropic and non-linear diffusion; Asymptotic-Preserving scheme; Mag-
netically confined plasma simulation.

1 Introduction

Anisotropic non-linear diffusion equations arise in several fields of application and lot
of effort is done for an efficient numerical resolution of this kind of challenging problem.
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To mention some examples, such non-linear evolution equations of parabolic type oc-
cur in the description of an isentropic gas flow through a porous media [2, 19, 29] or in
the description of transport phenomena in heterogeneous geologic formations, such as
fractured rock systems [6], which are of fundamental interest for petroleum or ground-
water engineering. In addition, these equations appear also in image processing, related
to the elimination of noise and small-scale details from an image [3, 25, 30] or in the
description of the anisotropic water diffusion in tissues of the nervous system [4]. The
present paper is closely related to the description of heat diffusion in magnetically con-
fined plasmas [18,21]. This problem, as the previous ones, is characterized by anisotropic
diffusion, but the extremely high intensity of the here involved anisotropy somewhat rep-
resents a peculiarity which distinguishes this problem and requires a treatment on its
own. From a mathematical or computational point of view, several works are concerned
with nonlinear/anisotropic diffusion problems, some references being [1, 7, 27, 29].

In the framework of a simplified continuum (fluid) model, the particle temperature
T , for each of the two species constituting a magnetically confined plasma (i.e. electrons
and ions), is governed by an equation of the type

∂tT −
1

ε
∇|| · (K||T

5/2∇||T )−∇⊥ · (K⊥∇⊥T ) = 0, (1.1)

where ∂t is the partial derivative with respect to time, the symbols ∇‖ and∇⊥, resp. ∇‖·
and ∇⊥·, represent the gradient, resp. divergence operators in the parallel or perpen-
dicular directions to the confining magnetic field, while 1

ε
K‖T

5/2 and K⊥ represent the
corresponding diffusion coefficients. The temperature evolution described by Eq. (1.1)
is obtained as part of a model considering the plasma as a low pressure gas obeying the
Fourier law and with a negligible viscosity [21]. Despite the strong simplifications that
characterize this model, the temperature equation introduced above contains much of
the physics peculiar to a magnetically confined plasma: it accounts for the anisotropy
feature of the heat diffusion phenomena, and it clearly points out the role played by the
magnetic field, being able to greatly affect the temperature distribution in the plasma.
This is translated by the fact that the directions parallel and perpendicular to the
magnetic field are characterized by diffusion coefficients that vary by several orders of
magnitude. In the framework of the present model, K‖ and K⊥ are of the same order of
magnitude, while ε is a small parameter which is responsible for the high anisotropy of
the diffusion process (in physically relevant situations, one typically has 0 < ε ≪ 1) [20].
Moreover, it should also be stressed that Eq. (1.1) is non-linear, the parallel diffusion
coefficient being proportional to T 5/2.

From a physical point of view, the reason for such a high anisotropic diffusion process
is due to the magnetic confinement. Indeed, the purpose of the magnetic field is to
restrict the particle motion across, but not along the magnetic field lines, thus singling
out transport phenomena along the parallel direction. The direct consequences of this
magnetic confinement are small resistivities along the field lines and an extremely large
ratio of parallel to perpendicular thermal conductivities.

When high anisotropies are involved, all the standard numerical methods developed
so far break down or are highly inefficient [15]; in order to catch and to preserve the
highly anisotropic feature of the diffusion process, it is typically required to adopt severe
time-step and mesh-size constraints and/or to use a computational mesh which takes
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into account the direction of the anisotropy, i.e. of the magnetic field itself. Since for a
variety of reasons it is desirable to avoid such limitations, it is of primary importance to
develop numerical techniques that can be successfully applied to the resolution of Eq.
(1.1) irrespective of the degree of the anisotropy and exploitable on a simple Cartesian
mesh.

An efficient and performant fast semi-implicit method has been recently developed
[27], in a framework similar to the subject of the present paper, however with the
important difference that the problem there is linear, anisotropic but not singularly
perturbed. The range of validity of the there developed method is limited – at least in
the formulation proposed so far – as it considers only a fixed ε, and is hence inapplicable
in the limit ε → 0 and thus inapplicable for variable anisotropies within the domain of
interest.

To overcome all the limitations affecting the standard numerical methods, it is at
first necessary to understand why these methods are inefficient (or not even applicable)
in case of highly anisotropic diffusion. The main reason is connected to the fact that
the original problem – written in terms of Eq. (1.1) – is a so-called singular perturbation

(SP) problem, meaning that in the limit ε → 0 its solutions converge to the solutions of
a limit problem which typically is qualitatively different (because of a change in type or
nature of the original model equations) from the original singular perturbation problem.
A successful approach in developing efficient numerical methods for solving these kind of
problems is based on the idea of reformulating the original SP problem, with the aim of
obtaining an equivalent regular problem, i.e. a formulation which appears as a regular
perturbation of the limit problem, thus avoiding the singularity when ε → 0. Such an
asymptotic-preserving (AP) reformulation of the original SP problem (if it exists) turns
out to be treatable with standard numerical methods (for instance, by means of the
finite element methods) irrespective of the value of the perturbation parameter ε [15].

Initially, this kind of asymptotic-preserving technique was introduced by S. Jin in
the framework of the numerical resolution of multiscale kinetic equations [23]. Later on,
several other works have developed AP techniques for multiscale kinetic models [5,10,24]
as well as fluid models [8, 9, 15, 16], the reference list being not exhaustive.

The purpose of the present paper is hence the introduction of an AP scheme in
the framework of the non-linear, highly anisotropic evolution problem (1.1). A semi-
discretization in time and a linearization via a fixed point map will lead to an anisotropic
elliptic problem, which shall be reformulated in AP form following the procedure already
developed for elliptic linear problems [17]. The novelty of this work is the design of an
AP scheme in a non-linear setting. The focus will be the validation of the here developed
method, in particular its asymptotic preserving property, as well as its application to the
specific case of the temperature evolution in a magnetically confined plasma; a detailed
mathematical and numerical analysis of the proposed method is left as the subject of a
forthcoming paper.

It should however be stressed that the method proposed here is completely general
and its range of application is not restricted to fusion plasma simulation. Since the
method, in contrast to other recently developed methods (as [27]), does not assume
that the diffusion is aligned with one coorinate axis, it could find applications also in
problems in which the diffusion direction is arbitrary, or in problems in which the degree
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of anisotropy varies (possibly of several orders of magnitude) over the computational do-
main (even if the perturbation parameter ε will be considered constant in the following,
the method is quite more general and there is no need for such an assumption).

The paper is organized as follows. In Section 2, the non-linear evolution problem
of the temperature distribution in magnetically confined plasmas is introduced. In
Section 3, the numerical method proposed for the resolution of this evolution problem
is detailed: the semi-discretization in time as well as the treatment of the non-linearity
are illustrated in Section 3.1; the semi-discretization in space and the procedure that
leads to the reformulation of the original SP problem in its AP form are detailed in
Section 3.2. The description of the numerical tool that has been developed and the
discussion of some numerical results are provided in Section 4. The validation of the
proposed AP scheme is presented in two reference cases for which analytical solutions
of the non-linear evolution problem and also of the corresponding non-linear elliptic
problem, have been expressly constructed (Section 4.1). The comparison of the results
obtained by means of the AP scheme to those obtained by means of standard techniques
is the subject of Section 4.2. Section 4.3 deals with a selection of the numerical results
obtained when the proposed AP scheme is applied to the specific problem presented
in Section 2. Finally, in Section 5 some conclusions regarding the effectiveness and
the efficiency of the application of the AP scheme to the numerical resolution of the
non-linear evolution problem are drawn.

2 Description of the problem

We consider a two or three dimensional anisotropic, non-linear heat problem, given on a
sufficiently smooth, bounded domain Ω ⊂ R

d, d = 2, 3 with boundary Γ. The direction
of the anisotropy is defined by the time-independent vector field b ∈ (C∞(Ω))d, satisfying
|b(x)| = 1 for all x ∈ Ω.

Given this vector field b, one can decompose a vector v ∈ R
d, its divergence ∇·v, and

the gradient ∇φ of a scalar function φ(x) into a component parallel to the anisotropy
direction and a component perpendicular to it:

v|| := (v · b)b , v⊥ := (I− b⊗ b)v , such that v = v|| + v⊥ ,

∇|| · v := ∇ · v|| , ∇⊥ · v := ∇ · v⊥ , such that ∇ · v = ∇|| · v +∇⊥ · v ,

∇||φ := (b · ∇φ)b , ∇⊥φ := (I− b⊗ b)∇φ , such that ∇φ = ∇||φ+∇⊥φ ,

where ⊗ is the vector tensor product and I is the d× d identity matrix. The boundary
Γ can be decomposed into three parts following the sign of the intersection with b:

ΓD := {x ∈ Γ / b(x) · n(x) = 0}, Γin := {x ∈ Γ / b(x) · n(x) < 0} ,

Γout := {x ∈ Γ / b(x) · n(x) > 0}, ΓN = Γin ∪ Γout

where the vector n is here the unit outward normal on Γ.
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With these notations, the problem introduced in Eq. (1.1) can be written, along
with its proper boundary and initial conditions, as follows:

(P )























































∂tT −
1

ε
∇|| · (K||T

5/2∇||T )−∇⊥ · (K⊥∇⊥T ) = 0 , in [0, S]× Ω ,

1

ε
n|| · (K||T

5/2(t, ·)∇||T (t, ·)) + n⊥ · (K⊥∇⊥T (t, ·)) = −(γ − 5/2)T (t, ·) ,

on [0, S]× ΓN ,

∇⊥T (t, ·) = 0 , on [0, S]× ΓD ,

T (0, ·) = T0(·) , in Ω .
(2.2)

As pointed out in Section 1, the function T represents the temperature of the
ions/electrons, K|| and K⊥ are two coefficients of the same order of magnitude and
ε is a (typically very small) positive parameter (0 < ε ≪ 1). The coefficient γ rep-
resents the sheath heat transmission coefficients and takes the value γ = 9/2 for the
ions, resp. γ = 5/2 for the electrons [28], and [0, S] is the time interval over which
the temperature evolution is to be studied, starting from a given initial temperature
distribution T0.

It is worth observing that the boundary conditions (2.2)2,3 correspond, in the case
of ions (γ = 9/2), to a null or outgoing energy flux (respectively, on ΓD and ΓN) and,
in the case of electrons (γ = 5/2), to a null flux on the whole boundary Γ.

The parameter 0 < ε ≪ 1 can be very small and is responsible for the high anisotropy
of the problem. The numerical difficulty in solving (2.2) comes from the fact that letting
ε → 0 in (2.2) leads to the reduced problem

(R)



































−∇|| · (K||T
5/2∇||T ) = 0 , in [0, S]× Ω ,

n|| · (K||T
5/2(t, ·)∇||T (t, ·)) = 0 , on [0, S]× ΓN ,

∇⊥T (t, ·) = 0 , on [0, S]× ΓD ,

T (0, ·) = T0(·) , in Ω .

(2.3)

which is an ill-posed problem admitting an infinite amount of solutions, if T0 satisfies
(2.3)1, or no solution in the contrary case. To avoid this problem, standard numerical
schemes adapt the time- and space-grids to ε, when solving (2.2), which leads to ex-
tremely high computational costs, if 0 < ε ≪ 1. From a computational point of view,
the ill-posedness of the reduced problem (2.3), is translated in an ill-conditioned linear
system to be solved for the solution of (2.2) when 0 < ε ≪ 1.

The aim of this paper is to introduce an efficient numerical method permitting to
solve (2.2) on a coarse Cartesian mesh, which has not to be adapted to the field lines of
b and whose mesh size is independent on the value of ε. To this aim, we shall study a
test case, with an initial temperature T0 consisting of a hot spot (see Fig. 1) and analyze
the diffusion process, paying attention to the numerical diffusion perpendicularly to the
magnetic field lines.
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Figure 1: Sketch of the computational domain, of the magnetic field and of the initial
hot spot.

We shall assume in the rest of this paper the following mathematical hypothesis.

Hypothesis A Let
◦

ΓD 6= ∅, T0 ∈ L2(Ω), T0 > 0 and suppose 0 < ε ≪ 1, γ > 5/2 fixed.

The diffusion coefficients K‖ ∈ L∞(Ω) and K⊥ ∈ Md×d(L
∞(Ω)) are supposed to satisfy

0 < K0 6 K‖(x) 6 K1 , f.a.a. x ∈ Ω,

K0||v||
2
6 vtK⊥(x)v 6 K1||v||

2 , ∀v ∈ R
d and f.a.a. x ∈ Ω,

with 0 < K0 6 K1 some constants.

3 Numerical discretization

Let us introduce in this section the Asymptotic-Preserving numerical method we devel-
oped. Firstly we shall discretize the equation (2.2) in time and linearize the problem.
Then an AP-strategy is adopted to discretize in space the obtained highly anisotropic
elliptic problem. For the sake of simplicity, but with no loss in generality, we shall con-
sider only the case of a 2D rectangular domain Ω := [0, Lx]× [0, Ly], the generalization
to the 3D case being straightforward.

The following symbols concerning the homogeneous discretization of the time and
space domains are adopted:

0 = t0 < t1 < · · · < tNt
= S, tn = n∆t, n = 0, . . . , Nt,

0 = x1 < x2 < · · · < xNx
= Lx, xi = (i− 1)∆x, i = 1, . . . , Nx,

0 = y1 < y2 < · · · < yNy
= Ly, yj = (j − 1)∆y, j = 1, . . . , Ny,
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where ∆t = S/Nt, ∆x = Lx/ (Nx − 1) and ∆y = Ly/ (Ny − 1) are, respectively, the
time and space steps. We shall denote in the following by T n

ij the approximation of the
temperature in the point (xi, yj) of the domain Ω at time tn.

To simplify the notations, we shall also introduce, for a fixed Φ, the diffusion operator
L(Φ) defined by

L(Φ)T := −
1

ε
∇|| · (K||Φ

5/2∇||T )−∇⊥ · (K⊥∇⊥T ).

3.1 Semi-discretization in time and treatment of the non-linearity

The first step in the treatment of (2.2)1 consists in the semi-discretization in time via
the Euler implicit method. This leads to the following sequence of equations:

T n+1 − T n

∆t
+ L(T n+1)T n+1 = 0 , n = 0, · · · , Nt − 1 . (3.4)

As one can observe, we have to deal, for each fixed n, with a non-linear equation. To
solve this one, a fixed point argument is used. For fixed n ∈ N, let us start our iterative
procedure by setting T n,0 := T n and construct the iterative sequence by associating to
T n,k the solution T n,k+1 of the following linear equation

T n,k+1 − T n

∆t
+ L

(

T n,k
)

T n,k+1 = 0, (3.5)

completed with the corresponding boundary conditions. The Schauder fixed point theo-
rem allows to show that the sequence {T n,k}k converges towards the unique fixed point,
which is T n+1, solution of (3.4).

The proof of the convergence of the fixed-point sequence T n,k is left for a forthcom-
ing, more mathematically-oriented paper. For the time being, we restrict ourselves to
reporting that in all the computations performed so far, the convergence of the sequence
has always been reached (within the chosen numerical tolerance ǫtol = 10−6) after a num-
ber of steps typically less than 10. Denoting by k∗ the number of steps required to reach
the convergence of the sequence, in the sens:

‖T n,k − T n,k−1‖L2 > ǫtol, 0 < k < k∗

‖T n,k∗ − T n,k∗−1‖L2 6 ǫtol,

the behavior of k∗ as a (discrete) function of the time index n, for three different sizes of
the time interval ∆t (∆t = 10−6, ∆t = 10−7 and ∆t = 10−8), in a reference case which
may be assumed as representative of all the calculations performed so far (ε = 10−6,
Nx × Ny = 64), is shown in Fig. 2. The dependence of the number of steps required
to reach convergence, k∗, is not markely affected by the mesh size: a larger number of
grid points (i.e. of Nx and Ny) leads to smaller values of k∗ in the earlier stage of the
transient (i.e. for small values of n); then, as the system evolves towards the equilibrium
state (i.e. for large values of n), the values of k∗ quickly attains its minimum value and
no further reduction of k∗ is obtainable adopting more refined meshes.
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Figure 2: Number of required steps, k∗, to reach the convergence of the sequence T n,k

as a (discrete) function of the time step n, for ε = 10−6, Nx ×Ny = 64, and three
different ∆t: (a) ∆t = 10−6; (b) ∆t = 10−7; (c) ∆t = 10−8.

3.2 Semi-discretization in space: application of the APmethod-

ology

The linearized equation (3.5) is a highly anisotropic elliptic equation, to be solved several
times at each time step n. To this aim, the Asymptotic-Preserving scheme introduced
in [17] can be profitably adopted.

In order to simplify the presentation and also to keep the same notations as in [17],
we shall denote the unknown T n,k+1 by Θ and put A|| := K||(T

n,k)5/2, A⊥ := K⊥, which
are known functions.

At this stage, the system that we have to solve for each n is the following:














Θ− ∆t
ε
∇|| · (A||∇||Θ)−∆t∇⊥ · (A⊥∇⊥Θ) = T n , in Ω ,

1
ε
n|| · (A||∇||Θ) + n⊥ · (A⊥∇⊥Θ) = −(γ − 5/2)Θ , on ΓN ,

∇⊥Θ = 0 , on ΓD .

(3.6)

Defining now the bilinear forms

a||(Θ, χ) :=

∫

Ω

A||∇||Θ · ∇||χ dx , a⊥(Θ, χ) :=

∫

Ω

A⊥∇⊥Θ · ∇⊥χ dx ,

on the Hilbert space

V := {Φ ∈ H1 (Ω) /Φ|ΓD
= 0}, (Φ,Ψ)V :=

(

∇‖Φ,∇‖Ψ
)

L2(Ω)
+ ε (∇⊥Ψ,∇⊥Ψ)L2(Ω) ,

and letting moreover L be the Hilbert space given by

L := {λ ∈ L2 (Ω) /∇‖λ ∈ L2 (Ω) , λ|Γin
= 0}, (λ, µ)L :=

(

∇‖λ,∇‖µ
)

L2(Ω)
,

we can introduce the weak formulation of (3.6): Find Θ ∈ V, solution of

(SP )
(Θ, χ)L2(Ω) +

∆t

ε
a||(Θ, χ) + ∆t a⊥(Θ, χ) + ∆t (γ − 5/2)

∫

ΓN

Θχ dσ = (T n, χ)L2(Ω),

∀χ ∈ V.
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This is a highly anisotropic problem, which gets ill-posed in the limit ε → 0. Introducing
now, as proposed in [17], the decomposition Θ = P + εQ, with ∇||Θ = ε∇||Q, then one
gets the following AP reformulation of the SP problem:

(AP )























(Θ, χ)L2(Ω) +∆t a||(Q, χ) + ∆t a⊥(Θ, χ)+ ∆t (γ − 5/2)

∫

ΓN

Θχ dσ =

(T n, χ)L2(Ω), ∀χ ∈ V

a||(Θ, ξ)− εa||(Q, ξ) = 0 , ∀ξ ∈ L.
(3.7)

which has the crucial advantage of being well-posed in the limit ε → 0, in contrast to
the ill-posedness of the (SP)-problem. Indeed, putting formally ε = 0 in (3.7) yields
a well-posed saddle-point problem, where the unknown Q acts as a Lagrangian. Let
us underline, that in the limit ε → 0 the unknown Q will not vanish, and it is this Q
which forces the uniqueness of the solution, as we do not loose any more the information
about the perpendicular direction, as it was the case in (2.3). This property of well-
posedness in the limit, permits to get precise results, choosing coarse homogeneous
meshes, independent of the anisotropy direction and independent on the intensity of the
anisotropy. The detailed mathematical study is available in [17].

3.3 From the AP reformulation to the discretized equations

The system of continuous equations (3.7) will be solved numerically via a finite ele-
ment method (FEM), which seems quite natural because of the weak formulation of the
equations appearing in the system.

The computational (polyhedric or polygonal) domain Ω is subdivided into a set of
Ne non-overlapping polyhedric (or polygonal) subdomains Ωh such that Ω =

⋃Ne

i=1Ωh

and the vertex of one subdomain lies on the face (edge) of some other subdomain1. The
overall number of subdomain vertices will be denoted in the following by M . In the case
of a 2D quadrilateral domain Ω discretized by means of a Cartesian grid as discussed in
Section 3 and subdivided in triangular subdomains Ωi, we have Ne = 2 (Nx − 1) (Ny − 1)
and M = Nx × Ny. Let us moreover denote by I the set of vertex numbers, belonging
to the domain boundary Γin.

After introducing the P1-form functions ϕi (see, for example, [22]) we approximate
the infinite dimensional spaces V and L by

Vh := {vh :=

M
∑

i=1

viϕi} , Lh := {lh ∈ Vh / lh|Γin
= 0} = {lh :=

M
∑

k=1,k 6∈I

lkϕk} ,

and we are searching for the unknown functions (Θh, Qh) ∈ Vh × Lh, solutions of the

1Since no attempt is made here to provide a general description of FEM, we are assuming that Ω
is a polyhedric (in the 3D case) or polygonal (in the 2D case) domain and that Ωi,Ω2, . . . ,ΩNe

are
polyhedric (or polygonal) subdomains. More general cases are typically considered in textbooks.
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following discrete system

(AP )h























(Θh, χh)L2(Ω) +∆t a||(Qh, χh) + ∆t a⊥(Θh, χh)+ ∆t (γ − 5/2)

∫

ΓN

Θhχh dσ =

(T n, χh)L2(Ω), ∀χh ∈ Vh

a||(Θh, ξh)− εa||(Qh, ξh) = 0 , ∀ξh ∈ Lh.
(3.8)

Inserting now in this system the decomposition

Θh =
M
∑

j=1

Θjϕj , Qh =
M
∑

l=1,l 6∈I

Qlϕl ,

and taking as test functions χh := ϕi as well as ξh := ϕk, yields the linear system to be
solved at each time step

(

A B
C D

)(

Θj

Ql

)

=

(

Fi

0

)

,

with i, j = 1, · · · ,M and k, l = 1, · · · ,M where k, l 6∈ I. Moreover

Aij := (ϕj, ϕi)L2(Ω) +∆t a⊥(ϕj , ϕi) + ∆t (γ − 5/2)

∫

ΓN

ϕjϕi dσ , Bil := ∆t a||(ϕl, ϕi)

Ckj := a||(ϕj, ϕk) , Dkl := a||(ϕl, ϕk) , Fi := (T n, ϕi)L2(Ω)

The resolution of this linear system permits to compute the solution T n,k+1 correspond-
ing to the fixed point map (3.5), and after an interative procedure to solve finally the
semi-discrete system (3.4).

4 Numerical results

In order to solve numerically the temperature evolution problem (2.2) via the AP scheme
described in Section 3, a program which allow to solve the following, slightly more general
problem has been designed and implemented:































∂tT −∇ ·K∇T = f in [0, S]× Ω,

αin (n ·K∇T ) + βinT = γin on [0, S]× Γin,

αout (n ·K∇T ) + βoutT = γout on [0, S]× Γout,

αD (n ·K∇T ) + βDT = γD on [0, S]× ΓD,

T (0, ·) = T0 (·) in {0} × Ω,

(4.9)

where K denotes the diffusion matrix defined as follows:

K =
1

ε
K‖b⊗ b+ (I− b⊗ b)K⊥ (I− b⊗ b) ,

K‖ is a positive scalar field representing the diffusion coefficient along the parallel di-

rection (i.e. the direction parallel to the magnetic field, whose versor has already been
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defined as b) and K⊥ is a symmetric positive definite matrix accounting for the diffusion
process along the perpendicular directions. Remark that, there is no restriction for K‖

and K⊥ to be constants; non-linear problems may be treated as well as linear ones.
In its present form, the program allows to treat general two-dimensional domains Ω

and its object-oriented structure allows a straightforward generalization to the case of
three dimensions. The discretization of the domain may be made by means of struc-
tured as well as unstructured meshes, thus permitting to deal effectively with domains
Ω delimited by boundaries Γ of any shape. Nevertheless, specialized versions of the
computational routines have been developed in order to deal as efficiently as possible
with the specific case of two-dimensional rectangular domains Ω discretized by means
of structured meshes. Since the aim of the present paper is to test the AP scheme, in
particular its asymptotic preserving property on simple grids, and to compare it with
classical methods, we shall restrict ourselves to solving the governing equations of our
problem on two-dimensional rectangular domains Ω discretized via uniform (structured)
Cartesian meshes, as depicted in Section 3.

It is worth mentioning that, despite the fact that the code allows the user to set
mixed boundary conditions on each of the portions Γin, Γout and ΓD of the boundary,
the case of interest in the present analysis (i.e. the problem described in Eq. (2.2)) is
obtained by setting the following parameters in (4.9)2,3,4:

αin = αout = αD = 1, βin = βout = γ − 5/2, βD = γin = γout = γD = 0, (4.10)

and by setting the scalar field K‖, the matrix field K⊥ and the source term f as follows:

K‖ = K‖T
5/2, K⊥ = K⊥I, f = 0. (4.11)

Under these assumptions, the problem described in Section 2 is fully recovered.

Among its options, the program allows even the user to solve an elliptic version of
system (4.9), i.e. it is also capable to solve the following problem:



















−∇ ·K∇T = f in Ω,

αin (n ·K∇T ) + βinT = γin on Γin,

αout (n ·K∇T ) + βoutT = γout on Γout,

αD (n ·K∇T ) + βDT = γD on ΓD.

(4.12)

We shall refer to the problem defined by Eq. (4.12) as the steady problem, whereas the
problem defined by Eq. (4.9) is addressed as the evolution problem.

It is easily seen that, in the case of constant fields K‖ and K⊥ (for instance: K‖ = 1
and K⊥ = I) , and with the following choice of the coefficients appearing in Eq. (4.12):

αin = αout = βD = 1, αD = βin = βout = γin = γout = γD = 0,

the problem being solved replicates the linear elliptic one discussed in [17].

Both the evolution and steady problems are numerically solved via the AP formu-
lation, making use of the finite element method. Nevertheless, the SP formulation
associated to both problems has also been solved in a number of reference cases, mainly
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for comparison purposes with the results obtained by means of the AP formulation (see
Section 4.2).

In all the results presented in the following, the evolution of the temperature has
been calculated on a rectangular domain Ω = [0, 1] × [0, 1] discretized by means of
triangular elements (P1-elements) obtained via a uniform Cartesian grid based on a
Nx ×Ny discretization of the domain.

The numerical integration required in the discretization process has been tackled by
means of the Gauss-Legendre quadrature rules with six couples of nodes and weights. No
appreciable improvement has been noted when using a larger number of nodes/weights.

The systems of linear equations resulting from the discretization of the equations
have been solved by means of a direct method (via LU factorization), making use of the
routines optimized for sparse matrices included in the UMFPACK library [11–14].

All the calculations have been carried out on a machine equipped with an Intel Xeon
X5570 processor and 24 GB of RAMmemory in the IEEE double precision floating-point
format.

4.1 Validation of the AP scheme

The first step is to validate the numerical scheme based on the asymptotic-preserving
(AP) reformulation, in particular its convergence with respect to the time and space
mesh-sizes and for fixed ε-value. For this, an analysis of its performances is done in two
reference cases, for which analytical solutions to a non-linear time-dependent problem
of the form (4.9) and to a non-linear steady problem of the form (4.12) are known.
Section 4.2 will be concerned with the more important part, which is the study of the
asymptotic preserving property of the scheme, when ε → 0.

Comparison of the numerical results with a time-dependent exact solution

As a first step, the numerical results obtained via the AP scheme of Section 3 are
compared to a corresponding non-linear, time-dependent exact solution of problem (4.9),
constructed in the following manner. Assuming the magnetic field b aligned with the
x-axis, and taking as source term f the function

f =c2 exp (c3t)K⊥π
2 (1 + ε cos (2πx)) sin (πy)−

c3 exp (c3t) (c1 + c2 (1 + ε cos (2πx)) sin (πy))−

10c22K‖π
2ε sin2 (2πx) sin2 (πy) (exp (−c3t) (c1 + c2 (1 + ε cos (2πx)) sin (πy)))3/2+

4c2 exp (c3t)K‖π
2 cos (2πx) sin (πy) (exp (−c3t) (c1 + c2 (1 + ε cos (2πx)) sin (πy)))5/2

equation (4.9) admits the following solution:

T = (c1 + c2 (sin (πy) + ε cos (2πx) sin (πy))) exp (−c3t) , (4.13)

where c1, c2, c3 and ε are parameters.

The L2- and H1-norms of the errors between the numerical resolutions and the exact
solution at t = 0.1 are given in Table 1 for various space mesh-sizes and with a fixed

12



time step ∆t = 10−5. In agreement with the error estimation theory of the finite element
method (see, for example, [26] and the references therein) the numerical scheme is of
order 2 (resp. 1) in space when the L2-norm (resp. H1-norm) is considered.

discretization number of absolute error (ε = 1) absolute error (ε = 10−3)
(Nx ×Ny) elements L2-norm H1-norm L2-norm H1-norm
16× 16 450 1.754× 10−4 5.586× 10−4 9.668× 10−6 1.600× 10−4

32× 32 1 922 4.138× 10−5 2.678× 10−4 2.392× 10−6 5.837× 10−5

64× 64 7 938 1.003× 10−5 1.283× 10−4 5.790× 10−7 3.157× 10−5

128× 128 32 258 2.466× 10−6 6.371× 10−5 1.327× 10−7 1.570× 10−5

256× 256 130 050 6.126× 10−7 3.199× 10−5 3.768× 10−8 7.764× 10−6

512× 512 522 242 1.676× 10−7 1.671× 10−5 1.000× 10−8 3.912× 10−6

1024× 1024 2 093 058 4.412× 10−8 7.263× 10−6 2.616× 10−9 1.823× 10−6

discretization number of absolute error (ε = 10−6) absolute error (ε = 10−9)
(Nx ×Ny) elements L2-norm H1-norm L2-norm H1-norm
16× 16 450 2.654× 10−8 8.099× 10−6 3.017× 10−11 3.140× 10−6

32× 32 1 922 7.373× 10−9 2.384× 10−6 8.158× 10−12 8.340× 10−7

64× 64 7 938 1.929× 10−9 6.096× 10−7 2.029× 10−12 2.151× 10−7

128× 128 32 258 4.512× 10−10 1.459× 10−7 5.233× 10−13 5.888× 10−8

256× 256 130 050 1.129× 10−10 4.117× 10−8 1.472× 10−13 1.661× 10−8

512× 512 522 242 3.269× 10−11 1.123× 10−8 4.003× 10−14 4.806× 10−9

1024× 1024 2 093 058 9.745× 10−12 2.802× 10−9 1.079× 10−14 1.240× 10−9

Table 1: L2- and H1-norms of the errors between the time-dependent exact solution
(4.13) with c1 = c2 = 1, c3 = 10 and the numerical solutions obtained with the AP

scheme for various space mesh-sizes (∆t = 10−5, t = 0.1) and four different values of ε.

In a similar fashion, the L2-norms and the H1-norms of the errors between the time-
dependent exact solution and the numerical ones at t = 0.1 are given in Table 2 for
various time steps ∆t and a fixed mesh size (Nx × Ny = 64 × 64), for the same sets of
parameters as those in Table 1. In this case, it is easily seen that the numerical scheme
is of order 1 in time, as expected.

Comparison of the numerical results with a steady exact solution

In order to further validate the AP scheme, a comparison similar to the previous one
has been carried out also for the steady non-linear problem (4.12). In this case, an
exact solution has been obtained starting from the time-dependent solution (4.13), still
assuming that the magnetic field is aligned with the x-axis and computing the source
term f . This solution reads

T = c1 + c2 (sin (πy) + ε cos (2πx) sin (πy)) , (4.14)

and is compared to the numerical resolutions obtained via the AP scheme making use
of various mesh sizes, as done for the time-dependent problem, under the same choice
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discretization time step absolute error (ε = 1) absolute error (ε = 10−3)
(Nt) (∆t) L2-norm H1-norm L2-norm H1-norm
16 6.2500× 10−3 1.128× 10−2 6.832× 10−2 6.127× 10−5 2.807× 10−3

32 3.1250× 10−3 5.687× 10−3 4.019× 10−2 3.017× 10−5 1.466× 10−3

64 1.5625× 10−3 2.839× 10−3 2.350× 10−2 1.486× 10−5 7.727× 10−4

128 7.8125× 10−4 1.403× 10−3 1.306× 10−2 7.265× 10−6 4.061× 10−4

256 3.9063× 10−4 6.841× 10−4 6.577× 10−3 3.634× 10−6 2.054× 10−4

discretization time step absolute error (ε = 10−6) absolute error (ε = 10−9)
(Nt) (∆t) L2-norm H1-norm L2-norm H1-norm
16 6.2500× 10−3 5.731× 10−9 1.729× 10−6 6.541× 10−12 7.338× 10−7

32 3.1250× 10−3 3.184× 10−9 1.018× 10−6 3.852× 10−12 4.157× 10−7

64 1.5625× 10−3 1.749× 10−9 5.331× 10−7 1.906× 10−12 2.216× 10−7

128 7.8125× 10−4 7.680× 10−10 2.449× 10−7 1.015× 10−12 1.255× 10−7

256 3.9063× 10−4 3.849× 10−10 1.328× 10−7 5.474× 10−13 7.153× 10−8

Table 2: L2-norms and H1-norms of the errors between the time-dependent exact
solution (4.13) with c1 = c2 = 1, c3 = 10 and the numerical solutions obtained with the
AP scheme for various time-steps ∆t (t = 0.1, Nx×Ny = 64×64) and four values of ε.

as before of the parameters c1, c2 and ε. The results, given in Table 3, show that even
when solving the non-linear elliptic problem (4.12), the expectations regarding the order
of the method are fulfilled.

4.2 Comparison of the numerical results obtained by means of

the AP and SP formulations

Since the main drawback of standard schemes (i.e. schemes based on the SP formula-
tion) for the numerical resolution of highly anisotropic problems is connected to the ill-
conditioning of the matrices to be inverted, we shall check in this section the asymptotic-
preserving property of the AP reformulation, in particular the precise resolution of the
problem independently on the parameter ε.

The evolution of the temperature distribution has been calculated on a rectangular
domain Ω = [0, 1]× [0, 1], by solving the problem (4.9) with the choice of parameters as
given in (4.10) and (4.11). In order to fully determine the problem, the parameter γ, the
initial temperature distribution T0, and the magnetic field (given through the vectorial
field b), must be fixed.

As far as the parameter γ is concerned, we took the value recommended by the
physical experiments of a magnetically confined plasma, i.e. γ = 9/2 for ions and
γ = 5/2 for electrons [28]. The initial temperature distribution T0 has been chosen, for
both ions and electrons, under the form of a Gaussian-shaped hot spot placed in the
center of the domain:

T0 (x, y) =
1

2

(

1 + 3 exp

(

−5

(

x−
1

2

)2

− 5

(

y −
1

2

)2
))

. (4.15)
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discretization number of absolute error (ε = 1) absolute error (ε = 10−3)
(Nx ×Ny) elements L2-norm H1-norm L2-norm H1-norm
16× 16 450 1.091× 10−2 5.783× 10−1 1.012× 10−5 1.602× 10−1

32× 32 1 922 2.585× 10−3 2.688× 10−1 2.604× 10−6 5.842× 10−2

64× 64 7 938 6.277× 10−4 1.288× 10−1 6.516× 10−7 3.160× 10−2

128× 128 32 258 1.546× 10−4 6.387× 10−2 1.620× 10−7 1.572× 10−2

256× 256 130 050 3.835× 10−5 3.210× 10−2 4.029× 10−8 6.740× 10−3

512× 512 522 242 9.549× 10−6 1.673× 10−2 1.004× 10−8 3.516× 10−3

1024× 1024 2 093 058 2.382× 10−6 7.275× 10−3 2.594× 10−9 1.871× 10−3

discretization number of absolute error (ε = 10−6) absolute error (ε = 10−9)
(Nx ×Ny) elements L2-norm H1-norm L2-norm H1-norm
16× 16 450 8.333× 10−7 2.334× 10−3 9.017× 10−10 2.987× 10−5

32× 32 1 922 2.315× 10−7 6.867× 10−4 2.438× 10−10 7.934× 10−6

64× 64 7 938 6.059× 10−8 1.758× 10−4 6.064× 10−11 2.047× 10−6

128× 128 32 258 1.417× 10−8 4.207× 10−5 1.564× 10−11 5.601× 10−7

256× 256 130 050 3.546× 10−9 1.187× 10−5 4.399× 10−12 1.580× 10−7

512× 512 522 242 1.026× 10−9 3.237× 10−6 1.196× 10−12 4.572× 10−8

1024× 1024 2 093 058 3.059× 10−10 8.076× 10−7 3.224× 10−13 1.180× 10−8

Table 3: L2-norms and H1-norms of the errors between the steady exact solution
(4.14) with c1 = c2 = 1 and the numerical solutions obtained with the AP scheme for

various mesh sizes and four values of ε.

Concerning the choice of the magnetic field, the non-homogeneous field constructed
in [17] has been selected. The direction of the magnetic field, given by the unit vector
b is graphically represented in Fig. 4(a) and is given as follows:

b = B/|B|, B = (3 (2y − 1) cos (πx) + π, 3πy (y − 1) sin (πx)) . (4.16)

The condition numbers of the matrix to be inverted at each time step when solving
the problem (i.e. the matrix Λ introduced in Section 3.3) via the AP scheme, resp.
SP scheme, have been estimated2 for several values of ε and a fixed mesh size and
time (Nx × Ny = 64 × 64, ∆t = 10−2). These results, graphically shown in Fig. 3,
clearly assert how, in the case of the SP scheme, the condition number of the matrices
dramatically increases as the perturbation parameter decreases, leading – as a matter
of fact – to unreliable numerical results and eventually to a break down of the scheme.
By contrast, when the AP scheme is adopted, the condition numbers of the matrices
are independent on ε, as the latter goes to zero.

In order to further compare the performances of the AP and SP schemes, the errors
between the numerical results and a suitable reference solution are investigated for
various values of the perturbation parameter ε. Since for the case under examination
no analytical solution is available, the reference solution is defined as the numerical

2For this purpose, the subroutine provided by the LAPACK library has been used.
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Figure 3: Estimate for the condition number of matrices involved in the algebraic
linear systems to be solved (the values have been calculated in the reference case

described in Section 4.3; Nx ×Ny = 64× 64, ∆t = 10−2, t = 0.1).

solution obtained via the AP scheme on a very fine mesh of Nx × Ny = 1024 × 1024,
∆t = 10−3.

The results, given in Table 4, show that both the L2-norm and the H1-norm of the
absolute error associated to the AP scheme are independent on ε, as the latter tends to
zero.

absolute error, L2-norm absolute error, H1-norm
ε AP scheme SP scheme AP scheme SP scheme
100 2.902× 10−3 2.902× 10−3 7.351× 10−2 7.352× 10−2

10−3 5.153× 10−4 4.231× 10−2 9.786× 10−3 4.360× 10−2

10−9 4.898× 10−4 ∗ 8.808× 10−3 ∗
10−15 4.898× 10−4 ∗ 8.808× 10−3 ∗

Table 4: L2- and H1-norms of the errors at t = 0.1 between a reference solution
(obtained on a fine mesh of Nx ×Ny = 1024× 1024, ∆t = 10−3) and the numerical

solutions obtained via the AP and SP schemes for different values of ε and ∆t = 10−2,
Nx ×Ny = 64× 64. The symbol ∗ appears when no meaningful solutions are obtained.

In Table 4, one can remark that the errors of the SP scheme are missing for the cases
with ε = 10−9 and ε = 10−15. This is due to the fact that for very small ε the SP scheme
does not converge any more. Indeed, in these cases, the iterative procedure carried out
at each time step in order to solve the non-linear problem, had to be stopped because
the sequence T n,k failed to converge towards the fixed point T n+1 (see Sec. 3.1). This
numerical difficulty, which – according to all the calculations performed so far – does
not affect the AP scheme, makes the AP scheme the only reliable choice when ε ≪ 1.

Another interesting aspect to be studied when comparing both schemes is the simu-
lation time. In the case with ε = 10−3 given in Table 4, for which the SP scheme provides
a reliable solution, it is interesting to observe that in order to obtain with the SP scheme
a numerical solution equally precise as the AP results (approximatively 5× 10−4), it is
necessary to chose a mesh of Nx ×Ny = 128× 128 and ∆t = 2.5× 10−3. This requires
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Figure 4: (a) Vector field b, representing the direction of the magnetic field; (b)
Graphical representation of the s–direction and r–direction, i.e. the directions parallel
resp. perpendicular to the field b and passing through the center of the domain Ω.

a SP computational time more than ten times larger than the AP computational time.
Again the considerable advantage of the AP technique is underlined.

4.3 Study of the temperature evolution in a magnetically con-

fined plasma

In the present section, we present some numerical results concerning the application of
the AP methodology to the model equation of the temperature evolution in a magnet-
ically confined plasma, described in Section 2. The choice of the parameter γ, of the
magnetic field b and of the initial temperature profile T0 have been previously described
in Section 4.2. It should be stressed here that nor this initial temperature T0, nor this
magnetic field direction b, have a specific physical meaning. Computations involving
different initial temperature distributions have been carried out but, since the choice of
T0 does not seem to alter qualitatively the results and the considerations that will be
outlined in the following, we focus only on the results obtained using the choice of T0

given in Eq. (4.15). The magnetic field direction given in Eq. (4.16) has been chosen
since it satisfies the requirement of being a non homogeneous field; nevertheless such a
choice is not restrictive and any realistic magnetic field direction could be considered as
well. The only free parameter of the problem is thus the quantity ε.

In the following, we investigate the effects on T of changing the parameter ε on a
fixed grid. For this, it is useful to introduce two specific directions, which we shall call s
and r, defined as follows. The direction s is taken as the direction along the streamline
of the vector field b passing through the point (xc, yc) = (0.5, 0.5), and the direction r
is obtained as the direction locally perpendicular to the streamlines of the vector field b
passing though the point (xc, yc). The direction s and r, which are shown in Fig. 4(b)
– for the case of the vector field given in (4.16) – may be addressed, respectively, as the
parallel and perpendicular directions.

The evolution of the temperature has been obtained for several values of the param-
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eter ε. A representative selection of these results, namely the temperature distribution
in the domain Ω at four specific time instants (t = 0.01, 0.05, 0.1, 10) is given in Fig. 5
and Fig. 6 in the case of ions (γ = 9/2) for ε = 1, 10−3, 10−15 and in the case of electrons
(γ = 5/2) for ε = 10−15.

From all the shown temperature field evolutions, it is remarkable how the parallel
direction, s, is actually the privileged direction – in terms of diffusion of the temperature
– for sufficiently small times, and for any value of the parameter ε, except ε = 1.
As a general rule, the maximum temperature decreases in time as a consequence of
the absence of any energy source and of the specific boundary conditions imposing
null or outgoing energy fluxes (see Eq. (2.2)). In the case of ions, the monotonic
decrease (towards zero) of the maximum temperature in time can be remarked in the
temperature distributions given in Fig. 5 and Fig. 6(a–d). This decrease is responsible
for an outstanding behavior of the diffusion process: as the temperature becomes smaller
and smaller, the parallel diffusion coefficient, K‖ = K‖T

5/2, becomes also smaller and
smaller, leading to a loss of predominance of the diffusion in the parallel direction
with respect to the diffusion in the perpendicular direction, which is independent on the
temperature. This behavior, which is intrinsic to the problem itself and is not dependent
on the initial temperature distribution, is only partially contrasted by small values of
the parameter ε: The smaller is ε, the slower is the loosing of predominance of the
parallel diffusion, but as time lapses it necessarily takes place. It should be stressed,
however, that this phenomenon is concomitant to the already mentioned decay of the
overall ion temperature field, which tends to zero over all the computational domain,
as it may be seen, for instance, in Figs. 5(d,h) and Fig. 6(d). In this regard, it
may be added that the decrease of the overall ion temperature towards zero and its
associated numerical/mathematical difficulties, may not occur in realistic magnetically
confined plasma simulation, due to the presence of source terms keeping the temperature
approximately at the same level.

In the case of electrons, a similar discussion may be repeated, with the difference
that in this case the overall temperature approaches an equilibrium value which is not
zero, as shown in Fig. 6(h). This remarkable difference with respect to the case of ions
is due to the fact that for the electrons (γ = 5/2), the boundary conditions provide a
null energy flux on the whole boundary Γ of the computational domain, while for the
ions (γ = 9/2) an outgoing energy flux is imposed on ΓN .

In Fig. 7, the L∞-norm and the L2-norm of the ion and electron temperature fields
are plotted as functions of time. For both ions and electrons, the decrease of the L∞

norms clearly underlines the phenomenon mentioned above. For what concerns the L2

norm, its monotonic decrease in the case of ions and its constant value (within numerical
errors) in the case of electrons are in agreement with the results shown in Fig. 5 and
in Fig. 6 previously discussed. In the case of ions, as already stressed, the numerical
calculations cannot be carried out up to an indefinite time because the values of the
temperature in some portions of Ω will sooner or later becomes so small that numerical
difficulties arise3; they have been stopped here at t = 4, making use of ∆t = 10−3.

3When the temperature becomes of the same order of magnitude as the machine precision, it can
accidentally become negative in some portions of the computational domain, thus leading to meaningless
numerical results and finally to a breakdown of the numerical scheme.
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Figure 5: Ion temperature distribution Ti(x, y) and streamlines of the vector field b
obtained with ε = 1 (a–d) and ε = 10−3 (e–h) at t = 0.01, t = 0.05, t = 0.1 and t = 10

(∆t = 10−2, Nx = Ny = 64).
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Figure 6: Ion (a–d) Ti(x, y) and electron (e–h) Te(x, y) temperature distribution and
streamlines of the vector field b obtained with ε = 10−15 at t = 0.01, t = 0.05, t = 0.1

and t = 10 (∆t = 10−2, Nx = Ny = 64).
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Figure 7: L∞-norm and L2-norm of the temperature of ions (a,b) and electrons (c,d)
in the domain Ω as a function of time (ε = 10−6).

When investigating the role of the value of the parameter ε on the parallel and
perpendicular diffusion processes, it may be interesting to analyze the temperature
profiles at a fixed time t along the parallel and perpendicular directions, respectively
named s and r, which are graphically represented in Fig. 4(b). These ion and electron
temperature profiles obtained for several values of ε are shown in Fig. 8. These results
are extracted from the time evolution of the temperature, fixing t = 0.05, in order to
guarantee that the temperature fields have not reached too small values which prevents
from numerical errors.

As expected, the temperature profiles along the parallel direction (s-direction) are
almost flat, excepting the case with ε = 10−3. For this latter value of ε, in fact, the
diffusion in the parallel direction is not sufficient to lead in the fixed time interval to a
uniform distribution of the temperature along the s-direction, while in all other cases,
the parallel diffusion is so large as to lead to an almost uniform temperature distribution.

From the analysis of the temperature distribution along the perpendicular direction
(r-direction), it is easily seen that no appreciable change occurs as ε gets smaller than
ε = 10−3, as for the profiles along the s-direction. Indeed, as the parameter ε gets smaller
and smaller, its impact on the temperature distribution gets less and less important, as
expected.

Finally, with the aim of checking the mesh sensitivity of the AP numerical results,
the comparison of the ion temperature profiles along the s and r directions are shown in
Fig. 9, as computed with several meshes and a fixed time step ∆t. In order to compare
these results with those obtained making use of classical methods, the profiles obtained
with the SP scheme are given as well. It easily seen that, with the AP scheme, the
dependence of the numerical results on the mesh size becomes barely appreciable as the
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(∆t = 2.5× 10−2). The dashed profiles in (c) and (d) represent the reference solution
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Figure 10: CPU time (for one time step) required by the AP and SP schemes to
compute the solutions plotted in Fig. 9 (∆t = 2.5× 10−2).

mesh size increases, while very thick meshes are to be used in order to get a comparable
degree of accuracy with the SP scheme.

In order to compare the computational burden associated to the solutions plotted in
Fig. 9, the CPU time required to obtain the solutions for each time step are given in Fig.
10. For a given mesh size, the AP scheme is clearly more computationally expensive
than the SP scheme, as explained in Section 3; nevertheless, taking into account that
– as seen above – the AP scheme provides good results with coarser meshes than those
required by the SP scheme, it turns out that the AP scheme is clearly less expensive in
terms of both CPU time and data storage.

5 Conclusions

An asymptotic-preserving (AP) scheme has been introduced and implemented for the
numerical resolution of the simplified temperature equation model of a magnetically
confined plasma – which is a non-linear evolution problem characterized by highly
anisotropic diffusion. This scheme generalizes the asymptotic-preserving scheme de-
veloped in a previous work [17] for linear elliptic problems, to the present non-linear
evolutive case.

The here proposed AP scheme is shown to be much more performant than standard
discretization schemes based on the singular perturbation (SP) formulation. In partic-
ular, it is shown that the condition number of the discretization matrix, as well as the
errors, are ε-independent in the AP case, which is the essential feature of AP schemes.
Standard schemes would need an ε-dependent grid in order to be accurate.

Another important advantage of the here presented AP scheme is that the mesh has
not to be adapted to the direction of the anisotropy: coarse Cartesian grids are generally
sufficient to get accurate results even when extremely high anisotropies are involved (i.e.
ε ≪ 1), while SP scheme may require far more computationally expensive discretization
in order to provide the same degree of accuracy.

The here proposed AP scheme turns out to be an excellent candidate for the numer-
ical treatment of magnetically confined plasmas, for which extremely high anisotropic
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diffusion is involved and meshes independent from the direction of the anisotropy are
desirable.
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